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Some challenges in IPM

“For interior-point methods, can we give a theoretical explanation for the
difference between worst-case bounds and observed practical
performance? Can we devise an algorithm whose iteration complexity is
better than O(y/n1n(1/¢)) to attain e-optimality?” Todd [9]
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@ Itis possible to implement an 1PM that has good practical results and
that it has, at the same time, reasonable complexity and convergence
proprieties?

@ How to combine predictor, corrector or other high order directions to obtain
a better direction?

e Combine directions efficiently.
e There is no panacea for all problems

@ How to keep iterates under “good conditions”?
o Central path neighborhoods, heuristics, etc.



Background

Colombo and Gondzio [1] and Gondzio [3]: extend Mehrotra primal-dual
corrector idea, allowing multiple corrections at the same iterate,
to enlarge the step length;

Jarre and Wechs [4]: solve a small LP — using simplex — to combine directions;

Mehrotra and Li [7]: generate predictor and corrector directions using a Krylov
subspace search;

Villas-Bbas and Perin [11]: Postpone the barrier parameter and step length

choice by solving a polynomial optimization problem, on a
self-dual context.



What we have done |

@ Developed an Infeasible IPM for LP.

e Using a merit function that depends on the parameters (a, 1, o) where: «
is the step length; 1 defines a central path; o represents the 2nd order the
corrector direction weight.

e How we choose them?

@ Minimize a predictive polynomial merit function;
@ constrained to a neighborhood of the central path;
@ ensure that the iterate pass the ratio test.

e Our merit function is assembled using the residuals of both linear and
complementarity parts of the LP.
o We called it Optimized Choice of Parameters Method (OCPM)

@ We proved OCPM convergence results

© We established an Assumption that the initial point has to meet in order
to assure the convergence.

© We implemented and tested OCPM on NETLIB and compared with
PCx [2].



9 Optimized Choice of Parameters Method



Problem Formulation

@ Linear programming primal and dual problems are defined as

: T
min T {na? by
Az = Primal vz
s.t. { z=b { ) ATy+2=10b (Dual)
x>0 s.t.
z >0, yfree

AeR™" m <nisfull-rank, ¢c,z,z € R® and y,b € R™.
@ KKT conditions:
Axr =0,
ATy +z=c¢,
XZe=0,
(x,2) >0,

(KKT)

where X = diag(z), Z = diag(z) ande = (1,...,1)7.

@ This formulation is valid for Bounded LP under some transformations, including
the implementation.



Approach

Central-path method, to solve a Scaled KKT system, solving

Hp(Az —b) =0,

Hp(AT —¢)=0

p(ATy+z—c) =0, (Scaled KKT)
XZe = pe,

(z,2) >0,

for p > 0.
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Search Directions

@ Affine-scale or pure-Newton direction: (Ax?, Agya" Az3".
@ Ideal direction: Aw = (Ax, Ay, Az), such that
w = (Z,9,2) = w+ Aw, is the solution of
Az —b=0,
Alg+2—-c=0,
XZe = ue.
e We set Aw = Aw? + Aw®, where Aw® is an ideal corrector direction.
@ With some simplifications we obtain the nonlinear system

AAz¢ =0
AT Ay + Az¢ =0
XAz + ZAz¢+ AXAz = pe

o AXAzis a2nd order direction similar to the ones used by Gondzio [3] and
Mehrotra [6].



Search directions

Generalizing some methods

Intuition: Weight correction
@ For o > 0 bounded, suppose one can use the approximation

AXAz ~ c AXFAZ,

Nonlinear system above transformed onto the linear system

AAz¢ =0
ATAYC + A2¢ =0
XAz + ZAz¢ 4+ o AXH A = pe

@ lfonesets o = 1and u = (™) 7 (2¥)/n)®/(x” 2z /n), we have Mehrotra’s method.

@ In Gondzio’s multiple centrality method, A X Az is several times approximated by
projections on a central path neighborhood.

@ If u = 0ad o = 1 (feasible point) we have Monteiro, Adler, and Resende’s method.



Search directions

o Let Aw*® be divided as
Aw® = pAw* + o Aw’.
@ We write the next point as

z + a(Az¥ + pAzt + o Ax%)

G =
J =y +a(Ay* + pAy" + o Ay”)
=2+ a(AZ + pAZt + A7)

(o, u, o) yet to be selected

@ («, u,0) is considered as a real variable triplet.
@ Choose this parameters-variables using at most 3 back-solves.
@ Use a merit function that takes into account the KKT.

@ Finally, use the above linear combination of directions Aw?, Aw* and Aw?,
where (o, i, o) are the combination constants
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Scaled KKT residuals
Let p be the Scaled KKT residuals vector for a point (x,y, z), given by
pp(l‘,y, Z) = HP(A:B - b)

p(z,y,2z) =< pp(z,y,2) = Hp(ATy + 2 — ¢)
pC($7y,Z) = XZe

Definition (Merit function)

We define the merit function of a point (x,y, z) as

zT 2 1
Qp(mvyaz) = T +

—— sl

where pr, e pc are the Scaled KKT residuals at point (z, y, 2).
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Scaled KKT residuals

Let p be the Scaled KKT residuals vector for a point (x,y, z), given by

pp(,y,z) = Hp(Az —b)
p(xayaz) = pD(:CayaZ):HD(ATy—i-Z_C)
pC(x7yaz) = XZe

Definition (Merit function)
We define the merit function of a point (x,y, z) as

1 n 1 m-+n
o(z,y,2) = - j;(pc)j t ; (pL)i,

where pr, e pc are the Scaled KKT residuals at point (z, y, 2).
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Predicting the next merit

@ ltis possible to predict the merit function for the next iterate (Z, g, 2)?
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@ ltis possible to predict the merit function for the next iterate (Z, g, 2)?

Definition (Next Merit)

The next merit function value is given by

. —  k k _k ~—  k k _k
ﬁp(wkzykvzk):p[z(w Y 2 )—i—pc(x Y 42 )
It follows from the next residuals definition that

@(a, p,0) = pr(a, p,0) + po(a, p,0)
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Predicting the next merit

@ ltis possible to predict the merit function for the next iterate (Z, g, 2)?

Definition (Next Merit)

The next merit function value is given by

~rk k _k ~—  k Kk _k —/ k k _k
90(95 7yvz):pL(x Y ,Z)+pc(£1}‘ Y 42 )
It follows from the next residuals definition that

@la, u,0) = prla, 1, 0) + pe (e, p, o)

Theorem (Predictive Merit Function)

The predictive merit function can be expressed as the following polynomials on variables
(o, p, ).

¢(a, p,0) = (1 = @)(pL + po) + ap + a(a — o) Lo + a* Ay, 0),

@ Polynomial of total degree 4 in (v, u, o):
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Central Path Neighborhood as constraints

Given € (0,1) and 8 > 1, the central path infeasible neighborhood from
Kojima, Megiddo, and Mizuno [5] is

IN

T T
N—OO(’Y:/B)_{($7Z/,Z)€Q+:HTLH B a—— andzlzlzfyx’r'/z?VZ_l?vn}

gl =P G

13/20



Central Path Neighborhood as constraints

Given € (0,1) and 8 > 1, the central path infeasible neighborhood from
Kojima, Megiddo, and Mizuno [5] is

IN

T T
N—OO(’Y:/B)_{($7Z/,Z)€Q+:HTL” B rz andzlzlzfyxnz7vz_17vn}

gl =P G

Using our notation we get

Nos(7,8) = {(x,y,Z) cot: < szoc and (pc)i > vpc, Vi = 1n}
PL Pc
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Finding the actual direction

Polynomial Optimization Subproblem

@ Find («, , o) such as the predictive merit function is minimized as long as the
next point is constrained to N_ . (7, 8) , i.e.,

14/20



Finding the actual direction

Polynomial Optimization Subproblem

@ Find (a, i, o) such as the predictive merit function is minimized as long as the
next point is constrained to N_ (v, 3) , i.e.,

(e,p,0)

glc(aaliva') >0 Vi=1,...,n (SOP)
s.a gL(Oé,,U,,U)ZO

0< (Oé,‘u,O') < u,

where u € R? is a vector of bounds for (v, 1, ).
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Finding the actual direction

Polynomial Optimization Subproblem

@ Find (a, i, o) such as the predictive merit function is minimized as long as the
next point is constrained to N_ (v, 3) , i.e.,

(e,p,0)

glC(Oé,,LL,O') >0 Vi=1,...,n (SOP)
s.a gL(auU'vU)ZO

0< (Oé,‘u,O') < u,

where u € R? is a vector of bounds for (v, 1, ).

@ Global optimization of a polynomial constrained to a set of n + 1 polynomials and
bounds 0 and w.

@ ©,gr and gic are polynomials with up to 6 total degree on variables («, p, o).

@ Ratio test is performed
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e OCMP convergence analysis
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Convergence and Polynomiality

Analysis showed that:

@ OCPM is well defined: One can always find a triplet («, i, 0);
@ There is a triplet that decreases sufficiently the merit function.
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Convergence and Polynomiality

Analysis showed that:

@ OCPM is well defined: One can always find a triplet («, i, 0);

@ There is a triplet that decreases sufficiently the merit function.

v

Important Consequences

OCPM
@ converges to a LP solution with Q-linear rate;

@ has at most O(n?) iterations — it is polynomial.
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Initial Point

@ Most common infeasible complexity analysis use the following (or equivalent)

assumption:
Assumption
Let
9* = min {”(w*,z*)H (z%,yt,2T) € ]:*}
and

9>

where (Z, 7, %) is the least square solution for Az = b and ATy + z = c.
Then

(,%

9> 9% /v/n.

@ Under this assumption, authors define
(2°,9°,2%) = (9e, 0, V).

@ This initial point allows polynomial complexity proprieties, however generates
poor numerical performance.

@ Issue: One need to know a priori a bound for an optimal solution.
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Out initial point assumption

Assumption

For an interior (x°,4°, 2°), there is a LP optimal solution (z*, y*, z*) such that

Q(wO)TzO + (wO)TZ* 4 (w*)TZO|

0 _0 * ok

a5~ o 2z = .z

e w1 @)
1

‘<§4,

where ¢ > 1 is given by

gzmax{‘Aij|,|bi],‘cj‘, forl <i<mandl<j< n}

@ ¢ > 1 for any scaled problem.

@ Theoretical assumption, not used in OCPM implementation

@ All problems in NETLIBsatisfies it, with Mehrotra initial point heuristics
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e Numerical Results
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Some details

@ Implemented in C++

@ Using PCx framework, Mehrotra’s PC method with Gondzio’s corrections
(PCx-r)
@ PCx-OCP is our OCPM implementation.

@ PCx-OCP inherits from PCx-r all linear algebra, initial point and stop criteria
routines.

@ Same compilation flags
@ Source code adapted from Villas-Bdas et al. [10].
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Numerical Results

CUTEr-NETLIB-108

@ Selected from Neltib (CUTer):

e 95 feasible LP
e 12 of 16 Kennington problems
@ Only gap-8 — from 3 QAP problems

@ 4 Kennington LP and 2 QAP LP were kept out because of size (We use Cholesky
factorization)

o Partof NETLIB-108 is used by Colombo and Gondzio [1], Gondzio [3],
Jarre and Wechs [4], Mehrotra [6], and Mehrotra and Li [7], as well as by
PCx original tests.
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Numerical Results

@ Robustness of PCx-OCP

e PCx-rdidn’t solve 3 LP: brandy, greenbea e scfxm2
o PCx-OCP didn’t solve 5 LP: bnl1, fitlp, £it2p, greenbea, pilot4.

@ Total CPU time and iteration number are comparable

20/20



Numerical Results

@ Robustness of PCx-OCP

e PCx-rdidn’t solve 3 LP: brandy, greenbea e scfxm?2
@ PCx-OCP didn’t solve 5 LP: bnl1, fitlp, fit2p, greenbea, pilot4.

@ Total CPU time and iteration number are comparable

20/20



Numerical Results

@ Robustness of PCx-OCP

e PCx-rdidn’t solve 3 LP: brandy, greenbea e scfxm?2

e PCx-OCP didn't solve 5 LP: bnl1, fitlp, fit2p, greenbea, pilot4.
@ Total CPU time and iteration number are comparable

PCx-r: 1min 55s
PCx-OCP: 2min 36s

20/20



Numerical Results

@ Robustness of PCx-OCP

e PCx-rdidn’t solve 3 LP: brandy, greenbea e scfxm?2
o PCx-OCP didn’t solve 5 LP: bnl1, fitlp, fit2p, greenbea, pilot4.

@ Total CPU time and iteration number are comparable

PCx-r: 1min 55s
PCx-OCP: 2min 36s

@ CPU time, for us, validates our approach as a proof of concept
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Thank you!

lrsantos11@gmail.com
l.r.santos@ufsc.br
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